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Abstract

The present papers deal with numerical methods toward the accurate and efficient computations of multi-dimen-

sional steady/unsteady compressible flows. In Part I, a new spatial discretization technique is introduced to reduce

excessive numerical dissipation in a non-flow-aligned grid system. Through the analysis of TVD limiters, a criterion

is proposed to predict cell-interface states accurately both in smooth region and in discontinuous region. According

to the criterion, a new way of re-evaluating the cell-interface convective flux in AUSM-type methods is developed.

The resultant flux reduces numerical dissipation remarkably in multi-dimensional flows. Also, the monotonicity of

AUSM-type methods is achieved by modifying the pressure splitting function directly based on the governing equations

and the detection of sonic transition point with respect to a cell-interface. It is noted that the newly formulated AUSM-

type flux for Multi-dimensional flows, named M-AUSMPW+, possesses many improved properties in term of accuracy,

computational efficiency, monotonicity and grid independency.

Through numerous test cases from contact and shock discontinuities, vortex flow, shock wave/boundary-layer inter-

action to viscous shock tube problems, M-AUSMPW+ proves to be efficient and about twice more accurate than con-

ventional upwind schemes. The three-dimensional implementation of M-AUSMPW+ is expected to provide accuracy

and efficiency improvement furthermore.
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1. Introduction

The analysis of more complex flow physics has been required continuously with the development of

aerospace industry and it has been also true in the field of computational fluid dynamics. Simultaneously,

the more enhanced computing power has been requested for more complex and accurate computations.
With the rapid increase of computing power and data storage, three-dimensional unsteady flows can be

simulated in a time accurate manner. In addition, the present research trend in CFD emphasizes the mul-

ti-disciplinary integrated analysis including fluid dynamics, structure and control. Those requirements,

however, are not fully satisfied even with the present computing power. There always seems to be a bottle-

neck in computational analysis since more complex flow physics is attempted to compute than available

computing power. Thus, the fundamental study of numerical schemes which maximizes computational effi-

ciency and numerical accuracy within the given computing power have to be carried out.

Up to now, most popular numerical schemes have been developed based on one-dimensional flow phys-
ics. However, due to the essential limitations of this approach in the accurate and efficient calculations of

three-dimensional flows, multi-dimensional flow physics needs to be incorporated as much as possible at the

design stage of numerical flux functions. In discretizing the governing equations of fluid motions, some de-

gree of numerical errors is inevitably introduced. With the help of many previous studies, a numerical

scheme at present can remove errors almost completely in one-dimensional contact or shock discontinuity.

It means that the present CFD technique can give very satisfactory results in one-dimensional problems.

However, when applied to two- or three-dimensional flows, numerical scheme frequently generates large

errors and accuracy becomes deteriorated. In case of three-dimensional computations, it is especially con-
spicuous. Thus, a denser grid system is necessary, and as a consequence, a large amount of data storage and

computational cost are entailed. The blade/vortex interaction of helicopter and the resolution of wake in

low Reynolds number flows are some of typical examples. Since computed tip vortex is smeared out very

fast compared with real vortex, it is very difficult to examine the tip vortex interaction accurately. As a re-

sult, the blade/vortex interaction commonly resorts to vortex modeling method rather than modern CFD.

Even though modern CFD techniques are applied, grid system must be sufficiently denser to reduce numer-

ical dissipation. Another example is low Reynolds number flow around small aircrafts such as Micro Air

Vehicle or Unmanned Air Vehicles. As the usefulness of small size aircrafts is emphasized in the 21st cen-
tury, the phenomena of low Reynolds number flows are studied again very much. In low Reynolds number

flows around MAV, the lift to drag ratio is generally very low compared to conventional high Reynolds

number airplanes. In order to compensate unfavorable aerodynamic characteristics, many studies have

been focused on the interaction of unsteady wakes and/or vortices. Lower pressure in vortex core can be

used to generate high lift or high lift to drag ratio. For that reason, the strength and velocity of unsteady

wakes and/or vortices should be captured accurately.

In analyzing those complex phenomena, accurate and efficient numerical methods reflecting multi-

dimensional flow physics are critical. Through the Part I and Part II of the present papers, we describe
new numerical approaches which give much better results in multi-dimensional problems. The main focus

is to develop numerical methods that eliminate excessive numerical dissipation and upgrade solution accu-

racy by predicting the physical distribution of flow variables more accurately in multi-space dimensions.

In the first part, a spatial discretization technique is newly developed based on AUSM-type scheme [1].

The core idea of the new scheme is to modify the convective quantity at a cell-interface by reflecting phys-

ical and multi-dimensional phenomena. Generally, existing schemes, such as Roe�s FDS [2] or AUSM-type

schemes [1,3], determine a cell-interface flux from flow quantities obtained at interpolation step. In case of

the present method, a criterion to predict more accurate cell-interface state is proposed through the analysis
of TVD limiters [4–6], and the convective quantity at a cell-interface is re-evaluated according to the crite-

rion. The advantages of the newly determined convective quantity can be examined in two aspects. Firstly,

it provides the closer cell-interface approximation of the real physical value than previous approaches.
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Secondly, it can eliminate numerical dissipation effectively in a non-aligned grid system. As a result, the

present method can improve solution accuracy significantly, especially, in smooth region including contact

or slip discontinuity. From extensive numerical analyses and calculations, it is observed that the present

method is very useful in multi-dimensional flow computations without compromising computational cost.

For that reason, it is coined M-AUSMPW+ which represents AUSMPW+ scheme for multi-dimensional
flow calculations.

In the second part, a new limiting method based on multi-dimensional flow phenomena, named MLP

(multi-dimensional limiting process), is developed. The outstanding feature of MLP is, among others,

the ability to control oscillations in multi-space dimensions. By the help of a multi-dimensional limiting

function, MLP shows robust convergence and higher accuracy. As a result, it yields very desirable proper-

ties in terms of accuracy, efficiency and robustness compared with other higher order interpolation schemes

such as ENO/WENO [7–12], etc. Although, the proposed methods of Part I and Part II are mainly imple-

mented in AUSM-type schemes, they can be applied to other flux functions according to the authors�
experience.

The present paper deals with spatial discretization. Following the introduction, the accurate definition of

convective quantity at a cell-interface is justified through numerical analyses and the new spatial discreti-

zation scheme, named M-AUSMPW+, is developed in Section 2. Next, the characteristics of M-AUS-

MPW+ in multi-space dimensions are examined in Section 3. In Section 4, numerous test cases are

presented to verify the proposed method. Finally, conclusions based on the numerical analyses and com-

puted results are drawn.
2. Key ideas and improvements of baseline scheme

With the continuous advancement of CFD technology and the requirement for the computations of

more complex flow physics, computational efficiency becomes a most important factor. At the same time,

many studies are focused on parallel computing. It is, however, possible to realize the goal through the ad-

vanced design of spatial discretization, interpolation and temporal integration schemes. Thus, by combin-

ing both approaches, computational efficiency can be maximized since efficiency improvements due to
numerical methods can be independent of parallel computing architecture.

Computational efficiency and solution accuracy can go together because, if a scheme is accurate, physical

solution can be obtained on a coarser grid system. In the present paper, the upwind scheme of AUSMPW+

is modified to enhance accuracy without compromising the efficiency of original AUSM-type schemes. The

advantage of upwind scheme is that it can represent flow physics properly through the whole Mach number

range, i.e., it transfers flow information correctly according to the local feature of wave physics. As a result,

upwind scheme can capture discontinuity accurately and robustly. Aside from this, numerical dissipation

can be automatically determined through the whole Mach number range. Thus, it is less dependent on user
experience. In spite of such merits, upwind scheme seems to provide excessive numerical dissipation in con-

tinuous region because it is designed to have optimal numerical dissipation in discontinuity, i.e., it looks

more appropriate in discontinuous region.

Therefore, if an upwind scheme contains extra step to distinguish continuous region from discontinuous

region, or gently varied region from rapidly varied region, it can provide low dissipative/more accurate

results. With regard to this issue, the first objective of the present paper is to introduce a procedure to

differentiate continuous region from discontinuous region. The second objective is to improve the shock

capturing capability of AUSMPW+ to yield monotonic profile in a steady flow. Even though AUSMPW+
has been developed to remove the overshoot problem of AUSM-type schemes, it is still not perfect since it

shows a little overshoot under some condition (see Fig. 6.) and convergence becomes bad in some grid
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system [13]. Monotonic shock capturing property reduces grid dependency and improves convergence in all

grid systems.

2.1. Baseline scheme: AUSMPW+

AUSMPW+ can be briefly written as follows:
F1
2
¼ �Mþ

Lc1
2
WL þ �M�

Rc1
2
WR þ Pþ

LPL þ P�
RPR

� �
; ð1Þ
where P = (0,p, 0)T andW = (q,qu,qH)T.W is constructed from the primitive vector,U = (q,u,p)T. The sub-
scripts 1

2
and (L,R) stand for a cell-interface quantity, and the left and right states across a cell-interface,

respectively.
�M�

L;R is the Mach number interpolation function that is written as follows:
ðiÞ m1
2
¼ Mþ

L þM�
R P 0; �Mþ

L ¼ Mþ
L þM�

R � 1� wð Þ � 1þ fRð Þ � fL½ �; �M�
R ¼ M�

R � w � 1þ fRð Þ;
ð2aÞ

ðiiÞ m1
2
< 0; �Mþ

L ¼ Mþ
L � w � 1þ fLð Þ; �M�

R ¼ M�
R þMþ

L � 1� wð Þ � 1þ fLð Þ � fRÞ½ �; ð2bÞ
where the function f and w are pressure and Mach number based weighting functions.

Mach number splitting function M�
L;R are given by
M�
L;R ¼ � 1

4
ML;R � 1ð Þ2; ML;Rj j 6 1;

1
2
ML;R � ML;Rj jð Þ; ML;Rj j > 1;

(
ð3Þ
where ML;R ¼ UL;R=c1
2
and c1

2
is defined as follows:
ðiÞ 1
2
ðUL þ URÞ P 0 : c1

2
¼ c2s=maxðjULj; csÞ;

ðiiÞ 1
2
ðUL þ URÞ < 0 : c1

2
¼ c2s=maxðjURj; csÞ.
Here, cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðc� 1Þ=ðcþ 1ÞHnormal

p
and Hnormal ¼ minðHL � 0.5� V 2

L;HR � 0.5� V 2
RÞ. V is the transver-

sal velocity component to a cell-interface. And the pressure splitting function P�
L;R are given as follows:(
P�
L;R ¼

1
4
ML;R � 1ð Þ2 2�ML;Rð Þ; ML;Rj j 6 1;

1
2
1� sign ML;Rð Þð Þ; ML;Rj j > 1.

ð4Þ
AUSMPW+ has been developed to improve the monotonic characteristics of AUSM-type schemes.

AUSM-type schemes generally show a good performance in terms of accuracy, robustness and efficiency,

which is essential especially in hypersonic and reactive flow simulations. However, the advection character-

istic of AUSM-type schemes should be treated carefully because it is the direct cause of numerical over-

shoots or oscillations. By controlling the advection characteristic with the weighting functions f and w,

AUSMPW+ has successfully removed the overshoot phenomena without compromising efficiency and

accuracy. Details can be found in [1].

2.2. Method to treat continuous region

AUSM-type schemes define the Mach number at a cell-interface and transfer the flux quantity according

to its sign, which is called the advection property. The convective flux of AUSM-type schemes is written as

follows:
F1
2
¼ m1

2
c1
2
WL or R; ð5Þ
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where m1
2
is the cell-interface Mach number and W is the transferred quantity vector. If a flux function

can recognize the difference between the region of discontinuity and continuity more clearly, it can give

more accurate results. As a flexible way to clarify the two regions, the following flux form is

considered:
F1
2
¼ m1

2
c1
2
WL orR;1

2
; ð6Þ
where the subscript 1
2
represents the quantity defined at a cell-interface. Simply stated, the fundamental dif-

ference from previous AUSM-type schemes is to modify the convective quantity at a cell-interface appro-

priately in discontinuous and continuous regions. The convective quantity, WL;R;1
2
, is determined to satisfy

the following requirements:

r1. In order to increase accuracy in continuous region, the convective quantity should be able to distinguish

the region of continuity from discontinuity, or expressing it more mildly, gently varied region from rap-

idly varied region.

r2.The convective quantity should satisfy the monotonic condition.

r3.The convective quantity should maintain the upwind characteristic in supersonic flow.

Requirement 1 is the major objective of the present paper. Requirement 2 is necessary to prevent oscil-

latory behaviors across discontinuities. The final requirement is essential to represent physical phenomena

correctly in supersonic flow.

2.2.1. Requirement 1

Since the transferred quantity vector W = (q,qu,qH)T is calculated by primitive variable vector

U = (q,u,p)T, re-evaluating procedure is explained using primitive variable vector.

Firstly, the characteristics of continuous and discontinuous regions are examined to establish the crite-
rion that divides the two regions. The convective quantity at a cell-interface is then re-evaluated according

to the criterion. The ideal case would be that the Mach number and convective quantity at a cell-interface

are exactly the same as the physical values. Alternatively, if we can find out UL;R;1
2
which is closer to the real

physical value than ULorR, Eq. (6) will be very effective.

In order to obtain information on the distribution of the physical value, TVD interpolation [4,5] is

analyzed. All the vector notations in Part I and Part II are introduced for compact expression. Thus, in

actual implementation, they should be applied component by component. Through interpolation step,

cell-interface quantities are prepared as:
UL ¼ �Ui þ 0.5DUji ¼ �Ui þ 0.5/ rLð ÞDUi�1
2
; ð7aÞ

UR ¼ �Uiþ1 � 0.5DUjiþ1 ¼ �Uiþ1 � 0.5/ rRð ÞDUiþ3
2
; ð7bÞ
where / is TVD limiter and rL ¼ DUiþ1
2
=DUi�1

2
; rR ¼ DUiþ1

2
=DUiþ3

2
. And variation at each cell-interface is

defined as follows:
DUi�1
2
¼ �Ui � �Ui�1; DUiþ1

2
¼ �Uiþ1 � �Ui; DUiþ3

2
¼ �Uiþ2 � �Uiþ1; ð8Þ
where the bar means a cell averaged value.

Except for the region of local extrema, the accuracy of TVD interpolation (Eq. (7)) can be expressed by

Taylor expansion with respect to the location of iþ 1
2
as:
UL;R ¼ Uiþ1
2
þ Dx2U00 1

2
/0 1ð Þ � 1

3

� �
þO Dx3

� �
; ð9aÞ
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UL;R;1
2
¼ 0.5 UL þURð Þ ¼ Uiþ1

2
þ Dx2

2
U00 1

2
/0 1ð Þ � 1

3

� �
L

þ 1

2
/0 1ð Þ � 1

3

� �
R

� �
þO Dx3

� �
. ð9bÞ
The leading error term is second order and becomes third order accurate if /0ð1Þ ¼ 2
3
. Let us consider the

case that physical property is represented as Ureal and it satisfies the concave condition of oUreal/ox > 0 and

o2Ureal/ox
2 > 0 as in Fig. 1, where rL > 1 and 0 < rR < 1

rL
.

At first, minmod limiter is considered as the most diffusive second order TVD interpolation. It chooses

the smallest variation of the two candidates as
/ rð Þ ¼ max 0;min r; 1ð Þð Þ. ð10Þ

When rL > 1 and 0 < rR < 1

rL
, it gives:
UL;min mod ¼ Ureal;iþ1
2
� Dx2

3
U00 þO Dx3

� �
; ð11aÞ

UR;min mod ¼ Ureal;iþ1
2
þ Dx2

6
U00 þO Dx3

� �
; ð11bÞ
where the subscription of �real� means the physical value. Assuming Dx is sufficiently small and neglecting

the higher order term of O(Dx3)
�Ui < UL;min mod < Ureal;iþ1
2
< UR;min mod < �Uiþ1. ð12Þ
Fig. 2 shows the relation between the minmod interpolation value and the physical value. Now, let us define

the transferred quantity as UL;1
2
¼ UR;1

2
¼ 0.5ðUL;min mod þUR;min modÞ. Then
UL;R;1
2
¼ Ureal;iþ1

2
� Dx2

12
U00 þO Dx3

� �
. ð13Þ
Eq. (13) shows that the averaged value UL;R;1
2
is still 2nd-order accurate. However, the error is reduced to

one-fourth compared to UL,min mod and is smaller than UL,R,min mod. Thus, the re-evaluated convective

quantity, UL;R;1
2
¼ 0.5ðUL;min mod þUR;min modÞ is always closer to Ureal;iþ1

2
than UL,min mod and UR,min mod.

Next, discontinuous or rapidly varied region is examined. Discontinuous region is thoroughly different

in its nature from smooth region. Variation in discontinuous region should be determined in a way that it

makes the largest variation or the steepest slope possible within monotonic constraint because the

derivative of oUreal/ox at discontinuity is infinite mathematically. In this case, the variation of
jUL;1

2
� �Uij and jUR;1

2
� �Uiþ1j is always greater than the variation by minmod, jUL;min mod � �Uij

and jUR;min mod � �Uiþ1j, respectively.
2, –irealΦ

•
1, –irealΦ

• 1, +irealΦ

• 2,i+realΦ

•

•
ireal ,Φ

Fig. 1. Physical distribution of oUreal/ox > 0 and o2Ureal/ox
2 > 0.
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Fig. 2. Physical distribution and numerical approximation by minmod limiter.
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Thus, it is expected that solution is always improved both in continuous and in discontinuous region if

the convective quantity is re-evaluated as 0.5(UL,min mod + UR,min mod).

Secondly, as the most compressive second order TVD limiter, superbee limiter is considered. It chooses

the steeper variation of the two candidates as
/ rð Þ ¼ max 0;min 2r; 1ð Þ;min r; 2ð Þð Þ. ð14Þ

From Eq. (9), we have:
UL;superbee ¼ Ureal;iþ1
2
þ Dx2

6
U00 þO Dx3

� �
; ð15aÞ

UR;superbee ¼ Ureal;iþ1
2
� Dx2

3
U00 þO Dx3

� �
. ð15bÞ
Similar to the case of minmod, we have Eq. (16) from Eq. (15)
�Ui < UR;superbee < Ureal;iþ1
2
< UL;superbee < �Uiþ1. ð16Þ
Fig. 3 shows the relation between superbee interpolated value and the physical value. And, the re-evaluated
convective quantity is given by
UL;R;1
2
¼ Ureal;iþ1

2
� Dx2

12
U00 þO Dx3

� �
. ð17Þ
Again, the error is reduced to one-fourth compared to UR,superbee or its magnitude is smaller than that of

UL,R,superbee. Thus, the re-evaluated convective quantity, UL;R;1
2
¼ 0.5ðUL;superbee þUR;superbeeÞ predict a

better approximation than the original interpolated values in smooth region. In discontinuous region,
UL,superbee is always larger than UR,superbee as in Eq. (16) and thus jUL;1

2
� �Uij is always less than

jUL;superbee � �Uij. As a result, different from minmod limiter, accuracy is not improved with the re-evaluated

quantity. It gives more numerical viscosity.

Based on the previous analysis, the case of oUreal/ox > 0 and o2Ureal/ox
2 > 0 can be summarized as fol-

lows. In smooth region, the re-evaluation of UL;R;1
2
¼ 0.5ðUL þURÞ is always expected to yield more accu-

rate results than minmod and superbee limiters. In discontinuous region, accuracy would be enhanced only

in minmod case.
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1+iΦ

erbeeR sup,Φ

realΦerbeeL sup,Φ

Fig. 3. Physical distribution and numerical approximation by superbee limiter.
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Lastly, let us consider differentiable and symmetric 2nd order TVD limiters such as van Leer limiter.

Then, from / 0(1) = 0.5 and Eq. (9b), the leading error of the averaged value is the same as Eq. (9a). How-

ever, as will be explained in Proposition (Eq. (18)) and Section 3.1.2, the proposed re-evaluation always
selects steeper variation and as a result numerical viscosity is reduced.

When the distribution of Ureal is different, such as, oUreal/ox < 0 and o2Ureal/ox
2 > 0, rL is between 0 and

1 and rR is between 1 and 1/rL. Similarly, in case of oUreal/ox > 0 and o2Ureal/ox
2 < 0, rL,R is 0 < rL < 1 and

1 < rR < 1
rL
. In case of oUreal/ox < 0 and o2Ureal/ox

2 < 0, rL,R is rL > 1 and 0 < rR < 1
rL
. Through the similar

analysis, it can be shown that all other cases yield the same results.

When there is an inflection point (rL,rR > 1 or 0 < rL,rR < 1), the leading error of the averaged value in

Eq. (9b) is the same as Eq. (9a) because of /0
Lð1Þ ¼ /0

Rð1Þ. Lastly, overall accuracy becomes first order at

local extrema. But the averaged value is still effective because the leading error term after re-evaluation is
reduced by half.

Eqs. (12) and (16) reveal an important property which should be fully exploited in evaluating limited

variations. The derivative of oUreal/ox at discontinuity is infinite mathematically. Thus, when variations

are estimated accordingly, the condition of UR < UL (see Eq. (7)) can be readily derived as in superbee lim-

iter, which is quite reasonable in rapidly varied region. However, if the same interpolated values are applied

to gently varied region, computations is likely to be unstable due to excessive variation, or too much com-

pression ofUL or R. The computation of vortex flow in Section 4 would be a good example. The weak point

of minmod and superbee limiters is due to their consistent numerical behaviors regardless of the nature of
the real physical distribution.

Therefore, based on the previous analysis on TVD limiters, we identify rapidly varied region or discon-

tinuous region by the condition of �Ui < UR < UL < �Uiþ1. And, the criterion to distinguish gently varied

region from rapidly varied region is proposed as follows.

Gently varied region:
�Ui < UL < UR < �Uiþ1; ð18aÞ

Rapidly varied region:
�Ui < UR < UL < �Uiþ1. ð18bÞ

Responding to the requirement r1 mentioned in this section, the following criterion is proposed.
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Proposition. If the interpolated value of UL and R satisfies the condition of Eq. (18a), the physical state at a

cell-interface is considered to be in continuous region and the convective property at a cell-interface is modified

as UL;12
¼ UR;12

¼ 0.5ðUL þURÞ. If UL and R satisfies the condition of Eq. (18b), it is considered to in

discontinuous region and the interpolated value is not re-evaluated.

Then, the re-evaluated value, UL;R;12
is closer to the physical value than the original interpolated value.

Eq. (18a) can be rewritten as follows:
�Ui < UL < 0.5 UL þURð Þ < UR < �Uiþ1. ð19aÞ

Or more generally
UL � �Ui

�� �� 6 0.5 UL þURð Þ � �Ui

�� �� or 0.5 UL þURð Þ �ULð Þ UL;superbee �UL

� �
P 0. ð19bÞ
Here, UL lies between UL,min mod and UL,superbee, and the convective quantity is determined as follows.

In gently varied region, (0.5(UL + UR) � UL)(UL,superbee � UL) = 0.5(UR � UL)(UL,superbee � UL) P 0
UL;iþ1
2
¼ 0.5 UL þURð Þ. ð20aÞ
In rapidly varied region, 0.5(UR � UL)(UL,superbee � UL) < 0
UL;iþ1
2
¼ UL. ð20bÞ
As a consequence, UL;iþ1
2
always gives a larger variation, i.e., less numerical dissipation than the original

value and thus accuracy is enhanced.

Now, we also consider the case of general pth order interpolation. The left and right interpolated values

have the same magnitude with the opposite sign for the leading error term:
UL ¼ Ureal;iþ1
2
þ c

opU

oxp
þO Dxpþ1

� �
; ð21aÞ

UR ¼ Ureal;iþ1
2
� c

opU

oxp
þO Dxpþ1

� �
; ð21bÞ
where p is an odd number.

Then, the averaged value of UL;1
2
¼ UR;1

2
¼ 0.5ðUL þURÞ has the (p + 1)th order leading error term, i.e.,

accuracy is increased by one order of magnitude
UL;1
2
¼ UR;1

2
¼ 0.5 UL þURð Þ ¼ Ureal;iþ1

2
þO Dxpþ1

� �
. ð22Þ
In general, most pth order interpolation schemes maintain the accuracy level of Eq. (21) in gently varied

region. Thus, when the re-evaluated form of Eq. (22) adopts 3rd or 5th order interpolation schemes, the

results in the region of �Ui < UL < UR < �Uiþ1 is much more improved than 2nd order case. This will be

shown in Part II.
2.2.2. Requirement 2

With regard to the requirement r2 for the monotonic distribution, the re-evaluated value at a cell-inter-
face should satisfy the following constraint:
min UL;minmod;UL;superbee

� �
6 UL;1

2
6 max UL;minmod;UL;superbee

� �
. ð23Þ
Many researches have been conducted to preserve accuracy at local extrema by introducing TVB [14],

ENO [7], MP schemes [15], or extended TVD approaches [10,16]. Their results show that smooth extremum

can be treated successfully with less restrictive condition. For the purpose of robust convergence, however,

the re-evaluation procedure adopts TVD. Eq. (23) can be written as
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�Ui < UL;min mod < UL;1
2
¼ 0.5 UL þURð Þ < UL;superbee < �Uiþ1. ð24Þ
After applying the monotonic condition to Eq. (20), we have
UL;1
2
¼ UL þ sign UL;superbee �UL

� �
min 0.5 UR �ULð Þj j; UL;superbee �UL

�� ��� �
ð25aÞ
if (UR � UL)(UL,superbee � UL) P 0.
UL;1
2
¼ UL ð25bÞ
if (UR � UL)(UL,superbee � UL) < 0.

In brief, the property at a cell-interface can be rewritten as follows:
UL;1
2
¼ UL þ

max 0; UR �ULð Þ UL;superbee �UL

� �	 

UR �ULð Þ UL;superbee �UL

�� �� min
UR �ULj j

2
; UL;superbee �UL

�� ��� �
; ð26aÞ

UR;1
2
¼ UR þ

max 0; UL �URð Þ UR;superbee �UR

� �	 

UL �URð Þ UR;superbee �UR

�� �� min
UL �URj j

2
; UR;superbee �UR

�� ��� �
. ð26bÞ
2.2.3. Requirement 3

Eq. (26) should exhibit complete upwinding in supersonic region. However, the form of

U1
2
¼ 0.5ðUL þURÞ is not correct in supersonic flows although it is appropriate in subsonic flows. This sug-

gests that U1
2
should be determined after a cell-interface state is identified whether it belongs to subsonic or

supersonic region. A simple quadratic function is introduced for that purpose, and the convective quantity
at a cell-interface is finally formulated as follows:
UL;1
2
¼ UL þ

max 0; UR �ULð Þ UL;superbee �UL

� �	 

UR �ULð Þ UL;superbee �UL

�� �� min a
UR �ULj j

2
; UL;superbee �UL

�� ��� �
; ð27aÞ

UR;1
2
¼ UR þ

max 0; UL �URð Þ UR;superbee �UR

� �	 

UL �URð Þ UR;superbee �UR

�� �� min a
UL �URj j

2
; UR;superbee �UR

�� ��� �
; ð27bÞ
where a = 1 � min(1,max(|ML|,|MR|))
2, and its derivative is continuous when the Mach number becomes

zero. In supersonic flows, the function a has the value of zero and
UL;1
2
¼ UL; UR;1

2
¼ UR. ð28Þ
Although, the analysis in this section is carried out using TVD limiters, the Proposition looks general in the

sense that the present approach is still available when other monotonic interpolation schemes are adopted,

such as ENO and multi-dimensional process (MLP) that will be developed in Part II.

2.3. Monotonicity

2.3.1. Modification of the functions w and f

In AUSMPW+, shock discontinuity is recognized using the pressure based weight function by which the

advection property is controlled to remove overshoot phenomena. In most cases, it is useful and very effec-

tive. However, in weak shock discontinuity, pressure is no longer a good indicator due to small pressure

difference. To improve this situation, the Mach number is introduced to determine the final form of w.

The function w is given as follows:
w ¼ max w1;w2½ �. ð29Þ
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In case of steady flow
w1 ¼ min

ffiffiffiffiffiffiffiffiffiffiffi
c� 1

cþ 1

s
;max M�

L

�� ��; M�
R

�� ��� � ! ffiffiffiffiffiffiffiffiffiffiffi
cþ 1

c� 1

s" #2
; ð30aÞ
where superscript * indicates sonic property.

In case of unsteady flow
w1 ¼ 1�min
pL
pR

;
pR
pL

� �3

. ð30bÞ
When there is shock instability, it is completely avoided by adding the following term, which is optional.

Along the n direction (see Fig. 4)
w2 ¼ 1�min 1;
�piþ1;j � �pi;j

0.25 �piþ1;jþ1 þ �pi;jþ1 � �piþ1;j�1 � �pi;j�1

� �
 !" #2

1�min
�pi;j
�piþ1;j

;
�piþ1;j

�pi;j

 !" #2
. ð31aÞ
Along the g direction
w2 ¼ 1�min 1;
�pi;jþ1 � �pi;j

0.25 �piþ1;jþ1 þ �piþ1;j � �pi�1;jþ1 � �pi�1;j

� �
 !" #2

1�min
�pi;j
�pi;jþ1

;
�pi;jþ1

�pi;j

 !" #2
. ð31bÞ
In Eq. (29), w1 detects whether shock exists in the normal direction to a cell-interface or not.

In case of stationary shock wave, it is detected by Mach number relation. As the Mach number in front

of shock increases infinitely, the characteristic Mach number M* employed in w1 is converged to the finite

value,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcþ 1Þ=ðc� 1Þ

p
as in Eq. (32). Thus, from the Prandtl relation, shock discontinuity can exist only if

the Mach numbers of cells are greater than
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc� 1Þ=ðcþ 1Þ

p
. In this region, w1 has the value of one. Else-

where, w1 is the function of the critical Mach number, and it becomes zero as the Mach number goes to zero

to capture the contact discontinuity without numerical dissipation
M1 ¼
u1
c1

! 1; M�
1 ¼

u1
c�

!

ffiffiffiffiffiffiffiffiffiffiffi
cþ 1

c� 1

s
; M�

2 ¼
u2
c�

!

ffiffiffiffiffiffiffiffiffiffiffi
c� 1

cþ 1

s
. ð32Þ
Normal direction

to cell-interface

Transversal direction

to cell-interface

Cell-interface

jip ,1+jip ,

1,1 ++ jip1, +jip

–1,1+ jip–1, jip

Fig. 4. Pressure distribution around a cell-interface.
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Here, M1;2 and M�
1;2 denotes Mach numbers across shock wave when it is treated as pure mathematical dis-

continuity in gas dynamics. In case of unsteady shock wave, it is detected by pressure ratio, which is iden-

tical to AUSMPW+. The detail is referred to [1]. w2 is the indicator whether a shock exists in the transversal

direction to a cell-interface or not, which is necessary to prevent the shock instability phenomenon such as

the carbuncle phenomenon. The first term of Eq. (31) detects the degree of shock wave alignment with re-
spect to a cell-interface. If shock is aligned well, it becomes one because �piþ1;j � �pi;j is zero. The second term

just checks if or not shock wave exists in the transversal direction to a cell-interface. And, the function f is

given by
fL;R ¼
pL;R
ps

� 1
� �

1� w2ð Þ; ps 6¼ 0;

0; elsewhere;

(
ð33Þ
where ps ¼ pLP
þ
L þ pRP

�
R.

2.3.2. Modification of the pressure splitting function

The advection property of AUSM-type schemes may lead to undesirable overshoot problems across

shock discontinuity. Fig. 5 shows the typical profiles of numerical shock wave in one-point shock capturing

schemes, where the ith cell is intermediate. Fig. 6 shows corresponding converged pressure distribution at

the (i + 1)th cell according to the intermediate Mach number of cell i, when the left and right physical states

across the shock wave are fixed. It is found out that the converged pressure distribution of AUSM+

changes rapidly in case of M�
i � M�

1 or M
�
i � M�

2, i.e., when the location of a cell-interface almost coincides
with the position of shock discontinuity. In other words, pressure rapidly changes even if the Mach number

changes gently. Thus, if a cell-interface is nearly aligned with physical shock wave, there is a danger that

convergence becomes deteriorated. Moreover, numerical dissipation across sonic transition position disap-

pears in a shock-aligned grid system, which also makes convergence even worse. For these reasons, it is

often observed that convergence is very sensitive to grid system if M�
i � M�

1 or M
�
i � M�

2.

Fig. 7 is a good example showing the sensitivity of grid convergence. Depending on the location of sonic

transition point with respect to a cell-interface, the behavior of computed solutions is quite different. In the

initial stage of computation, numerical shock is propagated from the wall and moves toward steady shock
Sonic transition
position

Sonic transition
position

(a)
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1 >> iMM

*
2

*
1 MM i =+

2
1–i

*
1

*
1 MM i =–

2
1+i 2

3+i
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1**
2 << iMM

*
2

*
1 MM i =+

2
1–i

*
1

*
1 MM i =–

2
1+i 2

3+i

Fig. 5. Numerical shock profile of one point shock capturing scheme.
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location. During this evolution, stagnation region is continuously exposed to numerical error generated by

numerical shock wave, and contaminated stagnation region changes shock location again. In this situation,

if pressure changes rapidly according to the Mach number at the intermediate cell, it is very difficult to

obtain a converged solution. At the worst case, a converged solution cannot be obtained at all like

Fig. 7(a). In order to prevent this phenomenon completely, the interaction between shock discontinuity

and stagnation region due to numerical error should be eliminated. Fig. 7(c) shows the converged result

by AUSM+, which is obtained from the converged result of Fig. 7(b) by M-AUSMPW+.



540 K.H. Kim, C. Kim / Journal of Computational Physics 208 (2005) 527–569
The pressure splitting function is modified to reduce grid dependency and improve convergence charac-

teristics in steady shock discontinuity. Most useful relations in realizing a numerical shock profile are the

Rankine–Hugoniot or the Prandtl relation. Roe�s FDS exploits the Rankine–Hugoniot relation and

AUSM-type schemes use the Prandtl relation. Unlike the Rankine–Hugoniot relation which includes the

relation among thermodynamic variables such as density, pressure and temperature, the Prandtl relation
does not possess the information. This lack of information does lead to non-monotonic overshoots or

slightly diffusive results of a discrete shock profile. In M-AUSMPW+, this defect is cured by the informa-

tion on pressure jump across a shock, directly derived from the governing equations.

Let us consider a one-dimensional stationary shock wave with cs = c*. Then, from the Prandtl relation,

M�
1M

�
2 ¼ 1. It is assumed that shock is captured with only one intermediate cell and sonic transition position

is located between ith cell and the cell-interface iþ 1
2
, as in Fig. 5(a). Then
F iþ1
2
¼ F iþ3

2
¼ u2W2 þ P2. ð34Þ
Here, u2W2 + P2 denotes the physical flux after shock wave. Thus:
UiWi þM�
iþ1ciþ1

2
Wiþ1 þ Pi þ Piþ1P�

iþ1 ¼ Uiþ1Wiþ1 þ Piþ1 ¼ U 2W2 þ P2; ð35aÞ

UiWi þ Pi ¼ Mþ
iþ1ciþ1

2
Wiþ1 þ Piþ1Pþ

iþ1. ð35bÞ
Continuity equation
qiU i ¼ qiþ1M
þ
iþ1ciþ1

2
. ð36aÞ
Momentum equation
qiU iU i þ pi ¼ qiþ1M
þ
iþ1ciþ1

2
Uiþ1 þ 1� P�

iþ1

� �
piþ1. ð36bÞ
Energy equation
qiU iH i ¼ qiþ1M
þ
iþ1ciþ1

2
Hiþ1. ð36cÞ
Since the total enthalpy should be constant in a steady flow, energy equation is always satisfied only if con-

tinuity equation is satisfied. From Eqs. (36a) and (36b), the information on pressure jump across a shock

can be obtained as follows:
qiU iU i þ pi ¼ qiU iU iþ1 þ 1� P�
iþ1

� �
piþ1; ð37aÞ

P�
iþ1 ¼ 1� qiU i U i � Uiþ1ð Þ þ pi

piþ1

. ð37bÞ
Eq. (37) compensates the missing information among thermodynamic variables across shock. In case of

Fig. 5(b), pressure splitting function does not need to be modified since shock turns out to be stable and

maintains a monotonic profile [13]. Thus, the modified form of pressure splitting function is written as
follows:

If M�
i > 1, M�

iþ1 < 1 and 0 < M�
i M

�
iþ1 < 1
P�
iþ1 ¼ 1� qiU i U i � Uiþ1ð Þ þ pi

piþ1

. ð38aÞ
If M�
i > �1, M�

iþ1 < �1 and 0 < M�
i M

�
iþ1 < 1
Pþ
i ¼ 1� qiþ1Uiþ1 Uiþ1 � Uið Þ þ piþ1

pi
. ð38bÞ
Otherwise, it keeps the original form of Eq. (4).
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If computation reaches a steady state, Eq. (38) is distributed as in Fig. 8 showing that the positivity of the

modified pressure splitting function. In transient process to obtain a steady state solution, however, the pos-

itivity of Eq. (38) may not be guaranteed due to numerical error. Thus, the following form is adopted just

for stable computation:

If M�
i > 1, M�

iþ1 < 1 and 0 < M�
i M

�
iþ1 < 1
P�
iþ1 ¼ max 0;min 0.5; 1� qiU i Ui � Uiþ1ð Þ þ pi

piþ1

� �� �
. ð39aÞ
If M�
i > �1, M�

iþ1 < �1 and 0 < M�
i M

�
iþ1 < 1
Pþ
i ¼ max 0;min 0.5; 1� qiþ1Uiþ1 Uiþ1 � Uið Þ þ piþ1

pi

� �� �
. ð39bÞ
Figs. 6 and 7(b) clearly show the effect of the modified pressure splitting function.

The modification of the pressure splitting function can be examined in several flow conditions. Let us

consider the four different cases at a cell-interface across sonic transition position: compression shock wave,
expansion shock wave, continuous compression flow, and continuous expansion flow.

In case of expansion flows, the modification is not turned on. Since the derivative of the original pressure

splitting function is continuous, a continuous solution can be obtained. Especially, the present scheme does

not admit expansion shock condition by the proper action of numerical dissipation [1].

In case of compression shock, the derivative of the modified pressure splitting function is discontinuous

across sonic transition position. The derivative does not have to be continuous in numerical shock region.

Numerical shock wave is always captured with some intermediate states. Contrary to flow physics, numer-

ical mass flux at the intermediate cell cannot be conserved. Thus, the property at the intermediate cell can
be treated as purely numerical values, i.e., there is no physical meaning. If the pressure splitting function is

modified, it just means that the property at the intermediate cell is determined just for the purpose of

numerical stability. In this respect, the modification never makes a problem even if its first derivative is
Mach number at the inter mediate cell(M *
i )
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Fig. 8. Plot of pressure splitting function (Eq. (38)) according to the Mach number at an intermediate cell.
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not continuous. Lastly, in case of continuous compression wave, the non-smoothness may generate some

problem. In actual computations, it does not cause any problem especially when a higher order spatial

accuracy is used. Since left and the right values are very close to each other, pL � pR and ML,R � 1 and

P�
R ! 0 or ML,R � �1 and Pþ

L ! 0. As a consequence, the modification is useful for a steady flow calcula-

tion and grid dependency is considerably reduced.
Even though the modification is derived under steady flow assumption, it can be used optionally for un-

steady cases. It works successfully in unsteady shock wave without any numerical instability, which is ver-

ified with moving shock wave in Section 4.2.

Summarizing the previous analyses, the M-AUSMPW+ can be written as follows:
F1
2
¼ �Mþ

Lc1
2
WL;1

2
þ �M�

Rc1
2
WR;1

2
þ Pþ

LPL þ P�
RPR

� �
;

where PL,R = (0,nxpL,R,nypL,R,0)
T and nx,y are the components of (x,y) normal vector of a cell-interface.

The convective vector, W are
WL;R;1
2
¼

qL;R;1
2

qL;R;1
2
uL;R;1

2

qL;R;1
2
vL;R;1

2

qL;R;1
2
HL;R;1

2

0
BBBB@

1
CCCCA;
where HL;R;1
2
¼ c

c�1

p
L;R;1

2

q
L;R;1

2

þ 0.5ðu2
L;R;1

2

þ v2
L;R;1

2

Þ. Re-evaluated quantities at a cell-interface are obtained from

Eq. (27). �M�
L;R, P

�
L;R and the speed of sound at a cell-interface are the same as in AUSMPW+ in Section

2.1. In this process, pressure based weighting function (Eqs. (29) and (33)) and the modified pressure split-

ting function Eq. (39) are employed.
3. Characteristics of M-AUSMPW+

In this section, the numerical properties of M-AUSMPW+ are analyzed from the viewpoint of accuracy,

robustness and efficiency.

3.1. Accuracy enhancement in physical discontinuities

3.1.1. Contact or slip discontinuity

Employing the form of first order spatial accuracy, the numerical dissipation of AUSMPW+ and

M-AUSMPW+ is written as follows:
F1
2
;AUSMPWþ ¼ Wi or iþ1 Mþ

L þM�
R

� �
c1
2
þ PiPþ

i þ Piþ1P�
iþ1 ¼ WiU i þ PiPþ

i þ Piþ1P�
iþ1. ð40aÞ

F1
2
;M-AUSMPWþ ¼ WL;1

2
Mþ

L þM�
R

� �
c1
2
þ PiPþ

i þ Piþ1P�
iþ1 ¼ WL;1

2
Ui þ PiPþ

i þ Piþ1P�
iþ1. ð40bÞ
Across contact or slip discontinuity, velocity and pressure are the same
Ui ¼ Uiþ1; pi ¼ piþ1.
Thus, only the convective flux is analyzed here. The diffusive flux part of the convective flux showing the

magnitude of numerical dissipation explicitly is
F1
2
;convective ¼ 0.5 �UiU i þ �Uiþ1Uiþ1

� �
�D. ð41Þ
Assuming U is positive, the numerical viscosity of each scheme can be written as follows:
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DAUSMPWþ
�Uiþ1 � �Ui

� � ¼ 0.5 �UiU i þ �Uiþ1Uiþ1 � 2 �Ui Mþ
i þM�

iþ1

� �
c1
2

� �
�Uiþ1 � �Ui

� � ¼ 0.5Ui. ð42aÞ

DM-AUSMPWþ
�Uiþ1 � �Ui

� � ¼
0.5 �UiU i þ �Uiþ1Uiþ1 � 2UL;1

2
Mþ

i þM�
iþ1

� �
c1
2

� �
�Uiþ1 � �Ui

� � ¼ 0.5Ui 1� 2
UL;1

2
� �Ui

� �
�Uiþ1 � �Ui

� �
2
4

3
5; ð42bÞ
where
UL;1
2
¼ �Ui þ

max 0; ð �Uiþ1 � �UiÞðUL;superbee � �UiÞ
	 

ð �Uiþ1 � �UiÞ UL;superbee � �Ui

�� �� min a
�Uiþ1 � �Ui

�� ��
2

; UL;superbee � �Ui

�� ��� �
.

Eq. (42) clearly shows the difference in spatial accuracy between AUSMPW+ andM-AUSMPW+. Employ-

ing a higher order spatial accuracy with TVD limiter:
DAUSMPWþ
�Uiþ1 � �Ui

� � ¼ 0.5 �UiU i þ �Uiþ1Uiþ1 � 2UL Mþ
L þM�

R

� �
c1
2

� �
�Uiþ1 � �Ui

� � ¼ 0.5Ui 1� 2
UL � �Ui

� �
�Uiþ1 � �Ui

� �
" #

; ð43aÞ

DM-AUSMPWþ
�Uiþ1 � �Ui

� � ¼
0.5 �UiU i þ �Uiþ1Uiþ1 � 2UL;1

2
Mþ

L þM�
R

� �
c1
2

� �
�Uiþ1 � �Ui

� � ¼ 0.5Ui 1� 2
UL;1

2
� �Ui

� �
�Uiþ1 � �Ui

� �
2
4

3
5; ð43bÞ
where
UL;1
2
¼ UL þ

max 0; ðUR �ULÞðUL;superbee �ULÞ
	 

ðUR �ULÞ UL;superbee �UL

�� �� min a
UR �ULj j

2
; UL;superbee �UL

�� ��� �
.

In M-AUSMPW+, the sign of UL;1
2
� �Ui is always the same as that of �Uiþ1 � �Ui and the condition of

UL� �Ui
�Uiþ1� �Ui

6

U
L;1
2
� �Ui

�Uiþ1� �Ui
is always satisfied throughout a numerical discontinuity (see Eq. (27)). Thus, the numerical

viscosity of M-AUSMPW+ is always less than that of AUSMPW+. In addition, since UL;1
2
satisfies the

monotonic constraint of Eq. (23), M-AUSMPW+ maintains monotonicity as well as accuracy

improvement.
3.1.2. Oblique contact discontinuity

In Section 2, it was shown that the convective quantity of M-AUSMPW+ yields a closer approximation

to the physical value. In this section, another important merit of M-AUSMPW+ is revealed. The basic dif-
ference between Eqs. (5) and (6) is examined by analyzing numerical dissipation in multi-dimensional flows.

Although the basic idea of M-AUSMPW+ is developed without directly considering multi-dimensional

flows, the resulting flux form turns out to be very much effective in the computations of multi-dimensional

flows. Fig. 9 shows the schematic of an oblique contact discontinuity which is not aligned with a grid line or

a cell-interface. In this case, unnecessary numerical dissipation is generated and the discontinuity is

smeared. For this reason, multi-dimensional computations commonly require denser grid systems or a

highly accurate numerical scheme.

Let us consider contact discontinuity with constant velocity. In Fig. 10(a), discontinuity is well aligned
with grid lines and in Fig. 10(b), the situation is opposite. The initial conditions at cells 1 and 3 are known,

but in cell 2, where discontinuity is passing through, they should be determined physically. Since Figs. 10(a)

and (b) should represent the same flow physics, the values of cell 2 is reasonable if they satisfy conservation

requirements. Then, from mass conservation:
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A1 þ A2;1ð Þq1 þ A2;2 þ A3ð Þq3jðaÞ ¼ A1q1 þ A2;1 þ A2;2ð Þq2 þ A3q3jðbÞ; ð44aÞ

q2 ¼
A2;1q1 þ A2;2q3

A2;1 þ A2;2

. ð44bÞ
Through momentum and energy conservation, qV and qe at the cell 2 are given as follows:
A1 þ A2;1ð Þq1V1 þ A2;2 þ A3ð Þq3V3jðaÞ ¼ A1q1V1 þ A2;1 þ A2;2ð Þq2V2 þ A3q3V3jðbÞ; ð45aÞ

q2V2 ¼
A2;1q1V1 þ A2;2q3V3

A2;1 þ A2;2

. ð45bÞ
All of the internal energies are the same because pressure is constant across contact or slip discontinuity
q1e1 ¼ q2e2 ¼ q3e3. ð46aÞ

Thus, the total enthalpy in cell 2 is given by
q2H 2 ¼ q2e2 þ p2 þ 0.5q2V � V ¼ q2e2 þ p2 þ 0.5
A2;1q1 þ A2;2q3

A2;1 þ A2;2

V � V ¼ A2;1q1H 1 þ A2;2q3H 3

A2;1 þ A2;2

. ð46bÞ
From Eqs. (44)–(46), it is reasonable that the initial condition of cell 2 should be specified by the area ratio

divided by a contact discontinuity.

Now, let us assume that discontinuity is inclined as in Fig. 9. Then, the discretized governing equation

can be written
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Fig. 10. (a) Cell-interface aligned with a discontinuity. (b) Cell-interface not aligned with a discontinuity.
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Qnþ1 ¼ Qn � JDt
I

E � ds ¼ Qn � JDt
X

E � Ds; ð47Þ
where Q = (q,qu,qv,qet)
T, J = 1/V and V is a cell area and Ds is the length of a cell-interface. The cells 2, 5,

6 and 7 located on the left side of the discontinuity have the value of WL, and the cells 4, 9, 10 and 11 on the

right side of the discontinuity have WR. Properties at the intermediate region are determined by the area

ratio divided by the discontinuity as in Fig. 11. Then:
W1 ¼ 1� 0.5

tan h

� �
WL þ

0.5

tan h
WR; ð48aÞ

W3 ¼ 1� 0.5

tan h

� �
WR þ 0.5

tan h
WL; ð48bÞ
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Fig. 11. Cell divided by the oblique discontinuity.
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W8 ¼
0.5 1� 1

tan h

� �2
tan hWR þ 1� 0.5 1� 1

tan h

� �2
tan h

n o
WL; 1 6 tan h < 2;

1� 3
2 tan h

� �
WR þ 3

2 tan hWL; 2 6 tan h < 1;

(
ð48cÞ

W12 ¼
0.5 1� 1

tan h

� �2
tan hWL þ 1� 0.5 1� 1

tan h

� �2
tan h

n o
WR; 1 6 tan h < 2;

1� 3
2 tan h

� �
WL þ 3

2 tan hWR; 2 6 tan h < 1;

(
ð48dÞ
where W = (q,qu,qv,qH)T, H is the total enthalpy and h is the angle between a discontinuity and a cell-

interface. Since 0� < h < 45� and 45� < h < 90� are symmetric with each other, only the case of

45� < h < 90� is considered.
For the following flux form:
F1
2
¼ m1

2
c1
2
W ð49Þ
with m1
2
¼ Mþ

L þM�
R > 0, net flux differences generated in cells 1–4 are given as follows. For convenience,

all of the cell-interfaces have unit length.

Case 1: W = WL (AUSM+ or AUSMPW+)

(i) Cell 1:
Qnþ1
1 ¼ Qn

1 � JDt E1;4 þ E1;2 � E5;1 � E12;1ð Þ
¼ Qn

1 � JDt Vj j cos hW1 þ Vj j sin hW1 � Vj j cos hWL � Vj j sin hW12ð Þ;
¼ Qn

1 � JDt Vj j cos h W1 �WLð Þ þ sin h W1 �W12ð Þf g; ð50aÞ

where E1,4 means the cell-interface flux whose neighboring cells are 1 and 4 as in Fig. 9.
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(ii) Cell 2:
Qnþ1
2 ¼ Qn

2 � JDt E2;3 þ E2;7 � E6;2 � E1;2ð Þ
¼ Qn

2 � JDt Vj j cos hWL þ Vj j sin hWL � Vj j cos hWL � Vj j sin hW1ð Þ
¼ Qn

2 � JDt Vj j sin h WL �W1ð Þ. ð50bÞ
(iii) Cell 3:
Qnþ1
3 ¼ Qn

3 � JDt E3;9 þ E3;8 � E2;3 � E4;3ð Þ
¼ Qn

3 � JDt Vj j cos hW3 þ Vj j sin hW3 � Vj j cos hWL � Vj j sin hWRð Þ
¼ Qn

3 � JDt Vj j cos h W3 �WLð Þ þ sin h W3 �WRð Þf g. ð50cÞ
(iv) Cell 4:
Qnþ1
4 ¼ Qn

4 � JDt E4;10 þ E4;3 � E1;4 � E11;4ð Þ
¼ Qn

4 � JDt Vj j cos hWR þ Vj j sin hWR � Vj j cos hW1 � Vj j sin hWRð Þ
¼ Qn

4 � JDt Vj j cos h WR �W1ð Þ. ð50dÞ
If grid system is exactly aligned with discontinuity as in Fig. 10(a), the initial distribution would be the final

solution and discontinuity is exactly maintained. Also, the flux differences of Eq. (50), JDt
P

E � Ds, become

zero. On the other hand, if grid system is not aligned as in Fig. 10(b), the initial condition given from Eq. (44)
to Eq. (46) is no longer the final solution. The ideal case would be that JDt

P
E � Ds becomes zero and ini-

tial condition is accepted as the final solution. It means that, as JDt
P

E � Ds becomes smaller, the solution

becomes more accurate. In this respect, the sum of net fluxes is a good indicator to show the accuracy of con-

tact discontinuity in non-aligned grid system. The flux difference in each cell, D, can be summarized as

follows.

(i) Cell 1:
when 1 6 tan h < 2

D1

JDt Vj j WR �WLð Þ ¼ � cos h
W1 �WLð Þ
WR �WLð Þ � sin h

W1 �W12ð Þ
WR �WLð Þ

¼ sin h� 0.5 cos h
tan h

� 0.5 cos h� 0.5 1� 1

tan h

� �2

sin h tan h; ð51aÞ

when 2 6 tan h < 1
D1

JDt Vj j WR �WLð Þ ¼ � cos h
W1 �WLð Þ
WR �WLð Þ � sin h

W1 �W12ð Þ
WR �WLð Þ ¼ cos h 1� 0.5

tan h

� �
. ð51bÞ

(ii) Cell 2:
D2

JDt Vj j WR �WLð Þ ¼ � sin h
WL �W1ð Þ
WR �WLð Þ ¼ 0.5 cos h. ð51cÞ
(iii) Cell 3:
D3

JDt Vj j WR �WLð Þ ¼ � cos h
W3 �WLð Þ
WR �WLð Þ � sin h

W3 �WRð Þ
WR �WLð Þ ¼ � cos h 1� 0.5

tan h

� �
� 0.5 cos h

� �
.

ð51dÞ
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(iv) Cell 4:
D4

JDt Vj j WR �WLð Þ ¼ � cos h
WR �W1ð Þ
WR �WLð Þ ¼ � cos h 1� 0.5

tan h

� �
. ð51eÞ
Figs. 12(a) and (b) show the distribution of D of AUSMPW+ and Roe�s FDS, respectively. The result of

Roe�s FDS was obtained numerically. AUSMPW+ and Roe�s FDS give nearly the same results, implying

that AUSMPW+ and Roe�s FDS will show almost the same accuracy in capturing an oblique contact

discontinuity.

It can be seen from Eqs. (51a)–(51e) that D reduces and finally becomes zero as h ! 90�, i.e., a grid

line is aligned with the discontinuity. In order for D to be zero regardless of h, the condition of

W1 = W12 = WL, W1 = WL, W3 = WL = WR and W1 = WR should be satisfied, which is impossible because

W1 and W3 cannot be equal to WL and WR simultaneously. Thus, the initial condition cannot be the final

solution under this formulation because of numerical dissipation. Also, the overall flux difference be-

comes larger as h ! 45�, i.e., as multi-dimensional effect increases. Thus, a scheme is more favorable

in multi-dimensional problems if D becomes smaller as h ! 45�. Next, let us consider the averaged value
of WL and WR.

Case 2: W1
2
¼ 1

2
ðWL þWRÞ.

(i) Cell 1:
Qnþ1
1 ¼ Qn

1 � JDt E1;4 þ E1;2 � E5;1 � E12;1ð Þ
¼ Qn

1 � 0.5JDt Vj j cos h W1 þWRð Þ þ sin h W1 þWLð Þ � cos h WL þW1ð Þ � sin h W12 þW1ð Þð Þ
¼ Qn

1 � 0.5JDt Vj j cos h WR �WLð Þ þ sin h WL �W12ð Þf g. ð52aÞ
(ii) Cell 2:
Qnþ1
2 ¼ Qn

2 � JDt E2;3 þ E2;7 � E6;2 � E1;2ð Þ
¼ Qn

2 � 0.5JDt Vj j cos h WL þW3ð Þ þ sin h WL þWLð Þ � cos h WL þWLð Þ � sin h W1 þWLð Þð Þ
¼ Qn

2 � 0.5JDt Vj j cos h W3 �WLð Þ þ sin h WL �W1ð Þf g. ð52bÞ
(iii) Cell 3:
Qnþ1
3 ¼ Qn

3 � JDt E3;9 þ E3;8 � E2;3 � E4;3ð Þ
¼ Qn

3 � 0.5JDt Vj j cos h W3 þWRð Þ þ sin h W3 þW8ð Þ � cos h WL þW3ð Þ � sin h WR þW3ð Þð Þ
¼ Qn

3 � 0.5JDt Vj j cos h WR �WLð Þ þ sin h W8 �WRð Þf g. ð52cÞ
(iv) Cell 4:
Qnþ1
4 ¼ Qn

4 � JDt E4;10 þ E4;3 � E1;4 � E11;4ð Þ
¼ Qn

4 � 0.5JDt Vj j cos h WR þWRð Þ þ sin h WR þW3ð Þ � cos h W1 þWRð Þ � sin h WR þWRð Þð Þ
¼ Qn

4 � 0.5JDt Vj j cos h WR �W1ð Þ þ sin h W3 �WRð Þf g. ð52dÞ
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Fig. 12. (a) Numerical dissipation in each cell (AUSM+ or AUSMPW+). (b) Numerical dissipation in each cell (Roe�s FDS).
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By the same way, the flux difference is summarized as follows:

(i) Cell 1:
when 1 6 tan h < 2

D1

JDt Vj j WR �WLð Þ ¼ 0.5 sin h� cos h� 0.5 1� 1

tan h

� �2

sin h tan h

 !
; ð53aÞ

when 2 6 tan h < 1
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D1

JDt Vj j WR �WLð Þ ¼ 0.25 cos h. ð53bÞ

(ii) Cell 2:
D2

JDt Vj j WR �WLð Þ ¼ 0.25 cos h
1

tan h
� 1

� �
. ð53cÞ
(iii) Cell 3:
when 1 6 tan h < 2

D3

JDt Vj j WR �WLð Þ ¼ 0.5 sin h� cos h� 0.5 1� 1

tan h

� �2

sin h tan h

 !
; ð53dÞ

when 2 6 tan h < 1
D3

JDt Vj j WR �WLð Þ ¼ 0.25 cos h. ð53eÞ

(iv) Cell 4:
D4

JDt Vj j WR �WLð Þ ¼ 0.25 cos h
1

tan h
� 1

� �
. ð53fÞ
Fig. 13 shows the magnitude of D with the newly re-evaluated flux form. It should be noted that unlike
the cases of AUSMPW+ and Roe�s FDS, the numerical dissipation becomes zero and the initial condition is

accepted as the final solution when the angle between discontinuity and cell-interface is 45�. In other words,

as multi-dimensional effect becomes stronger, solution becomes more accurate. Thus, the re-evaluated flux

is certainly a better flux form for multi-dimensional problems and it is expected to give a significant

improvement in solution accuracy. Even for other angles, the total numerical dissipation decreases substan-

tially as in Figs. 12 and 13.
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Fig. 13. Numerical dissipation in each cell (case 2).
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Case 3: W1
2
¼ WR.

Similar to the previous cases, the flux difference can be summarized as follows:

(i) Cell 1:
D1

JDt Vj j WR �WLð Þ ¼ � cos h 1� 0.5

tan h

� �
� 0.5 cos h

� �
. ð54aÞ
(ii) Cell 2:
D2

JDt Vj j WR �WLð Þ ¼ � cos h 1� 0.5

tan h

� �
. ð54bÞ
(iii) Cell 3:
when 1 6 tan h < 2

D3

JDt Vj j WR �WLð Þ ¼ sin h� 0.5 cos h
tan h

� 0.5 cos h� 0.5 1� 1

tan h

� �2

sin h tan h; ð54cÞ

when 2 6 tan h < 1
D3

JDt Vj j WR �WLð Þ ¼ cos h 1� 0.5

tan h

� �
. ð54dÞ

(iv) Cell 4:
D4

JDt Vj j WR �WLð Þ ¼ 0.5 cos h. ð54eÞ
Fig. 14 shows that cell 1 in case 1 and cell 3 in case 3 have the same numerical dissipation, and cell 2 in case

1 and cell 4 in case 3 have the same value. That is, case 1 and case 3 are symmetric and the amount of

numerical dissipation is exactly the same.

From the comparative study of flux forms, it is confirmed that case 2 always yields minimal numerical
dissipation. Even though the present analysis is carried out when discontinuity is located on grid points as

in Fig. 9, the analysis result can be valid in general multi-dimensional situation.

3.1.3. Shock discontinuity

M-AUSMPW+ has the ability to capture stationary shock with only one intermediate cell. Since the con-

vective quantity is determined according to flow condition at a cell-interface, i.e., whether it is subsonic or

supersonic, numerical overshoot or oscillation can be avoided completely. Actual computations will be gi-

ven in Section 4.2.
In case of moving shock discontinuity, it is captured through several intermediate cells. At the head and

tail of numerical shock, the ratio of slope variations changes very rapidly and it is almost constant in the

middle region (see Fig. 20(b)). Thus, M-AUSMPW+ yields steeper variation than AUSMWP+ throughout

the region. As a result, the numerical dissipation of M-AUSMPW+ is reduced and overall accuracy for

moving shock case is enhanced again, which is verified in Fig. 20(b).

M-AUSMPW+ becomes identical to AUSMPW+ in case of expansion shock. Thus, it does not admit

expansion shock since it chooses the entropy-increasing speed of sound by considering flow direction.

The entropy condition of AUSMPW+ is proven in [1].
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3.2. Consistency

In order to solve the governing equations correctly, the numerical scheme should satisfy consistency. As

Dt and Dx approaches zero and the properties of both cells are equal, numerical flux vector should converge

to the physical flux vector of the original governing equations. If Dt, Dx ! 0, WL = WR and PL = PR. Thus,

W1
2
becomes WLorR since W1

2
is always between WL and WR and the pressure ratio of both cells are equal to

unit, which gives fL,R = 0. Then, the split flux vector of M-AUSMPW+ converges to the physical flux vector

as follows:
Table

Comp

Flux f

Time/t
F1
2
¼ �Mþ

Lc1
2
WL;1

2
þ �M�

Rc1
2
WR;1

2
þ Pþ

LPL þ P�
RPR

� �
¼ Mþ

L þM�
R

� �
c1
2
WL þ Pþ

L þ P�
R

� �
PL ¼ UWþ P. ð55Þ
3.3. Efficiency

Table 1a shows the comparison of computational cost for flux function only and Table 1b for overall

computational efficiency. Computational time for M-AUSMPW+ includes the time for Usuperbee in Eq.

(27). For comparison, second order MUSCL approach with van Leer limiter and AF-ADI time integration

is employed.

From Table 1a, it is seen that M-AUSMPW+ takes more computational time compared with AUS-

MPW+ because it includes the routine for Usuperbee. However, if overall computational cost including time
1a

arison of computational cost (flux function only)

unction only M-AUSMPW+ AUSMPW+ AUSM+ Roe�s FDS without entropy fix

imeAUSMPW+ 1.89 1 0.93 1.35



Table 1b

Comparison of computational cost (overall computation time)

Overall M-AUSMPW+

van Leer + ADI

AUSMPW+

van Leer + ADI

AUSM+

van Leer + ADI

Roe�s FDS without entropy fix

van Leer + ADI

Time/timeAUSMPW+ 1.10 1 0.99 1.04
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integration is taken into account, the ratio reduces to 1.1 in Table 1b. Considering the fact that M-AUS-

MPW+ provides more than two times grid reduction effect in two-dimensional problems, additional com-

putational cost is very acceptable.
4. Numerical results

4.1. Contact discontinuity

This test case reveals the amount of numerical dissipation when contact discontinuity is inclined to cell-

interface. It is closely related to accuracy in pure multi-dimensional phenomena such as vortex flow or

separated flow. As known well, AUSM-type schemes or Roe�s FDS can give the exact solution in one-

dimensional contact discontinuity. Fig. 15 shows the density distribution of a stationary normal contact

discontinuity. All of the schemes, including M-AUSMPW+, give the ideal result.

In case of oblique contact discontinuity, it is inevitably smeared due to additional numerical dissipation.

Fig. 16 is the result of stationary contact discontinuity inclined to cell-interface by 45� angle. Initial condi-
tions are given as follows:
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Fig. 15. Stationary normal contact discontinuity according to limiters and numerical schemes.
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Fig. 16. (a) Comparison of density contours between Roe�s FDS and M-AUSMPW+ (minmod limiter). (b) Comparison of density

contours between Roe�s FDS and M-AUSMPW+ (van Leer limiter). (c) Comparison of density contours between Roe�s FDS and M-

AUSMPW+ (Superbee limiter).
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ðqL; uL; vL; pLÞ ¼ ð2.0; 0.1; 0.1; 0.714Þ; ðqR; uR; vR; pRÞ ¼ ð1.0; 0.1; 0.1; 0.714Þ.

The grid system is 60 · 50. Boundary values along the left end and the bottom are fixed as initial values.
Others are extrapolated from the inside. As explained in Section 3.1.2, discontinuity cannot be captured

exactly. Once it is smeared, it is not compressed because there is no physical compression mechanism. Thus,

the only way to capture contact discontinuity accurately is to minimize numerical dissipation. As in Fig. 16,

the computed results become very diffusive compared with normal contact discontinuities. The left and

right figures are the density contours of Roe�s FDS and M-AUSMPW+ with minmod limiter, van Leer lim-

iter and superbee limiter, respectively. While Roe�s FDS with minmod limiter or van Leer limiter gives dif-

fusive results, M-AUSMPW+ captures contact discontinuity almost the same level of Roe�s FDS with

superbee limiter. Fig. 17 shows density distributions along the line AB in Fig. 16. In case of Roe�s FDS,
the discontinuity is captured through 13, 9, and 3 cells with minmod, van Leer and superbee limiters.

M-AUSMPW+ with the same limiters gives the discontinuity by 4, 4 and 3 cells.

Fig. 18 is the result for moving oblique contact discontinuity inclined to cell-interface by 45� angle. Dual

time stepping with AF-ADI is employed for second order temporal accuracy. The results are also sensitive

to the amount of numerical dissipation. In case of Roe�s FDS, the discontinuity is captured through 13, 9

and 5 cells by minmod, van Leer and superbee limiter. M-AUSMPW+ shows a similar accuracy enhance-

ment as in the case of a stationary contact discontinuity: it is captured through 6, 6 and 5 cells, respectively.

This includes additional numerical dissipation by temporal discretization. In conclusion, M-AUSMPW+
shows the almost same results as Roe�s FDS with superbee limiter in stationary and moving contact discon-

tinuity, even if minmod or van Leer limiter is used.

Superbee limiter gives the best results in contact discontinuity. But it cannot be used in continuous re-

gion, which will be mentioned in Section 4.4. In this respect, M-AUSMPW+ is very promising. M-AUS-

MPW+ can be used both in continuous and discontinuous regions: it can capture contact discontinuity

at the same accuracy level of superbee limiter, and simultaneously, it gives a significant accuracy enhance-

ment in continuous region.
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4.2. Shock discontinuity

This test is performed to investigate the stationary shock-capturing characteristic of M-AUSMPW+

according to the relation between sonic transition position and cell-interface. From the Prandtl relation,

the value of Miþ1
2
¼ M�

1M
�
2 is one. Thus, if the value of Miþ1

2
¼ M�

i M
�
iþ1 is one at a cell-interface, the location

of the cell-interface is exactly the same as shock position. For that reason, Miþ1
2
¼ M�

i M
�
iþ1 can be the good

indicator to express shock position.Miþ1
2
¼ M�

i M
�
iþ1 > 1 means that the cell- interface is in supersonic region

and Miþ1
2
¼ M�

i M
�
iþ1 < 1 means that the cell-interface is in subsonic region (see Fig. 5) [13].

The initial conditions for a stationary shock wave are as follows:

When M1 > 1 > M2:

Case (a): Mi� 1 = Mi = M1, Mi+1 = M2.

Case (b): Mi� 1 = M1, Mi = 0.5(M1 + 1) > 1, Mi+1 = M2.

Case (c): Mi� 1 = M1, Mi = 0.5(M2 + 1) < 1, Mi+1 = M2.

Case (d): Mi� 1 = M1, Mi = Mi+1 = M2.

In case of (b), Miþ1
2
¼ M�

i M
�
iþ1 < 1, thus, the modified pressure splitting function of Eq. (39) is turned on.

Fig. 19 shows the final computed solutions. Computations are converged to machine accuracy zero. It
shows that M-AUSMPW+ has the ability to capture monotonic shock profile with only one intermediate

cell in stationary shock discontinuity, regardless of sonic transition position. Although, the convective

quantity is modified, M-AUSMPW+ does not show numerical overshoots or oscillations. This is because

the convective quantity is designed to satisfy the monotonic constraint of r2 and to recognize whether cell-

interface is located at subsonic or supersonic region as in Eq. (39). Fig. 20 is the results for moving shock

discontinuity. Shock strength is equivalent to the 45� stationary oblique shock with the Mach number of 2,

and it is moving into stationary region. For time integration, second order dual-time stepping method is

used. Fig. 20(a) is pressure distributions along the x-direction. Computations with minmod and van Leer
limiter yield reasonable solutions. In case of superbee limiter, pressure wiggle is observed in post-shock
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Fig. 19. Stationary shock discontinuity according to the location of sonic transition position.
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region. Fig. 20(b) shows the magnified pressure distribution around shock region. M-AUSMPW+ is mono-

tonic as well as more accurate compared to Roe�s FDS. Also, it is observed in Fig. 20 that the modification

of P�
L;R does not cause any problem even for unsteady shock wave.

4.3. Rarefaction wave

Initial conditions are given as follows:
q; u; pð ÞL ¼ 3; 0.9; 3ð Þ; q; u; pð ÞR ¼ 1; 0.9.1ð Þ.

Fig. 21 is the results of 1st order Roe�s FDS without entropy fix, AUSMPW+ and M-AUSMPW+ with

Dx = 0.2 and a grid number of 200. Non-dimensionalized time is 10 and 3rd order TVD Runge–Kutta time

integration scheme [9] is used. CFL number is 0.5. As known well, Roe�s FDS without entropy fix shows

expansion shock in a rarefaction region. On the other hand, AUSMPW+ or M-AUSMPW+ does not yield

such problem because the speed of sound in M-AUSMPW+, like AUSMPW+[1], possesses the ability to

distinguish expansion shock wave from compression shock wave (see Fig. 22).

4.4. Stationary vortex flow

Vortex flow is characterized by the existence of negative pressure gradient toward core and curved

streamlines. Thus, it can be regarded as a pure multi-dimensional phenomenon, and in most applications,

it is very difficult or impossible that the flow is aligned with grid system. Moreover, in core region where

pressure gradient changes very steeply, computed results are smeared very much.

Vortex model is Thomson–Rankine vortex model which is composed of free vortex outside the core and

forced vortex inside the core.

(a) Free vortex (outside the core)
V h � r ¼ constant and
1

q
op
or

¼ V 2
h

r
. ð56aÞ
(b) Forced vortex (inside the core)
V h ¼ x � r and
dp
dr

¼ q
V 2

h

r
. ð56bÞ
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Angular velocity x is 3, core radius is 0.2 and maximum velocity is 0.54c1. Total computational domain is

from �2 to 2 with equal spacing. For grid convergence test, 25 · 25, 50 · 50, 75 · 75 and 100 · 100 grid
points are selected. Roe�s FDS, AUSMPW+ and M-AUSMPW+ are used for numerical fluxes. 3rd Order
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TVD Runge–Kutta time integration is used and CFL number is 0.8. Boundary conditions are fixed as ini-

tial values. Pressure distribution is plotted at the non-dimensionalized time of 40.

Fig. 23 shows density distributions according to numerical fluxes, plotted along the line AB. Fig. 23(a) is

the result of minmod limiter. Roe�s FDS and AUSMPW+ results are somewhat diffusive but M-AUS-

MPW+ provides much more improved result. Compared to the result by AUSMPW+ on four times denser

grid system, M-AUSMPW+ is about twice more accurate. A similar tendency in accuracy improvement can

be observed when van Leer limiter is used.
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Fig. 24 is the comparison of entropy variation and Fig. 25 is the characteristics of grid convergence. As

expected, entropy increase is minimal in case of M-AUSMPW+. M-AUSMPW+ with van Leer limiter

is asymptotically close to the result by AUSMPW+ with 3rd order interpolation without any limiting
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function. The result of superbee limiter is not included, because vortex strength is artificially amplified as

computation continues, i.e., entropy is decreasing continuously and finally computation fails. Thus, super-

bee limiter cannot be used for this type of flows, even though it gives the best results in a contact or a slip
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discontinuity. Aside from the reason, it has monotonicity and convergence problems in multi-dimensional

flows. In this respect, M-AUSMPW+ can be one of the best choices for multi-dimensional flows without

compromising the accuracy in a contact or slip discontinuity.

4.5. Shock wave/ boundary-layer interaction

The shock wave/boundary-layer interaction problem has been widely used for a viscous flow validation.

The free stream Mach number is 2 and the shock impinging angle is 32.5�. Reynolds number is 2.96 · 105.

The grid system is 56 · 59 and the denser grid is 150 · 200. It is known as a steady problem and AF-ADI is

used for temporal integration. Fig. 26 shows the comparison of pressure contours between Roe�s FDS and

M-AUSMPW+ with van Leer limiter. Fig. 27 is the pressure distribution along the line AB. The flow struc-

ture by M-AUSMPW+ presents expansion and re-compression waves more clearly because separated flow

is resolved more accurately. Fig. 28 shows the comparison of skin friction coefficients. Since separated flow
is not aligned with grid lines, a scheme should capture oblique contact discontinuity accurately for the accu-

rate calculation of separation region. From the numerical test of oblique contact discontinuity in Section

4.1, M-AUSMPW+ is expected to improve accuracy significantly in this region. It is certified by Figs. 28(a)

and (b). Separation region by M-AUSMPW+ is closer to the result on denser grid system. Fig. 28(c) and

Table 2 show the comparison of area ratio in separation region.

Separation region by Roe�s FDS with minmod limiter is very narrow but the same computation by

M-AUSMPW+ is similar to Roe�s FDS with van Leer limiter. Also, M-AUSMPW+ with van Leer limiter
Pressure contour (van Leer limiter)

Pressure contour (van Leer limiter)

A

BM-AUSMPW+ (56x59)

Roe’s FDS (56x59) 

Fig. 26. Comparison of pressure contours (van Leer limiter).
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shows a significant accuracy enhancement and separation region is very close to the result on denser grid

system. Fig. 29 shows the error history of M-AUSMPW+. Convergence characteristic is similar to Roe�s
FDS or AUSMPW+.

4.6. Viscous shock tube problem

This test problem was studied by Daru and Tenaud [17] and Sjögreen and Yee [18]. It is a shock tube

problem in 2-D square box with unit length, 0 6 x,y < 1, and the diaphragm is located at x = 0.5. The initial

state is given as follows:
q; u; v; pð ÞL ¼ 120; 0; 0; 120=cð Þ and q; u; v; pð ÞR ¼ 1.2; 0; 0; 1.2=cð Þ.

The Reynolds number is 200 and the viscosity is constant. For the fair comparison of AUSMPW+

and M-AUSMPW+, the viscous flux terms of the governing equations are calculated by 4th order

interpolation.

At t = 0, diaphragm is broken and the shock wave moves toward x = 1. Then, it is reflected and complex

flow interactions occur. 3rd order TVD Runge–Kutta time integration is used and the results are at non-

dimensionalized time of 1. CFL number is 0.5. Fig. 30(a) is the comparison of the density contour of AUS-
MPW+ and M-AUSMPW+ with van Leer limiter. The grid size is 250 · 125. Fig. 30(b) is the results on

500 · 250 grid system. After the interaction between boundary layer and the lambda shock, vortices due

to flow separation are generated and they grow up on the downstream side. From [18], the results with

500 · 250 grid system is very similar to the grid converged solution, which will be validated again in Part

II. Due to the effect of numerical dissipation in multi-dimensional flows, the growth of the primary vortex

by AUSMPW+ in Fig. 30(a) is relatively slower and it is less rotated compared with the results of M-AUS-

MPW+. Fig. 31(a) shows that more clearly. The nearest solution to the grid converged solution is the result

of M-AUSMPW+ on 500 · 250 grid system. AUSMPW+ is certainly much more diffusive than M-AUS-
MPW+ on 250 · 125 grid system. Fig. 31(b) shows that the result of M-AUSMPW+ by 250 · 125

(=31,250) grids is almost the same with AUSMPW+ by 350 · 175 (=61,250) grids. Table 3 is the
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comparison of primary vortex size. It is confirmed again that M-AUSMPW+ can provides the same accu-

racy with half grid points.

From the numerous test cases and analyses, M-AUSMPW+ is shown to provide the accuracy enhance-
ment in continuous region as well as in discontinuous region, especially, in multi-dimensional flow situa-
( 5 6 x 5 9 ) Stream line (minmod limiter) Roe's FDS (56x59)



Table 2

Comparison of the area ratio of separation region

Scheme Roe�s FDS

(van Leer limiter)

(150 · 200)

M-AUSMPW+

(van Leer limiter)

(56 · 59)

M-AUSMPW+

(minmod limiter)

(56 · 59)

Roe�s FDS

(van Leer limiter)

(56 · 59)

Roe�s FDS

(minmod limiter)

(56 · 59)

Area ratio 1 0.912 0.539 0.600 0.220
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Fig. 29. (a) Comparison of convergence (minmod limiter). (b) Comparison of convergence (van Leer limiter).
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tions. By implementing M-AUSMPW+ in three-dimensional computations, the accuracy improvement is
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Table 3

Comparison of the height of primary vortex

Scheme AUSMPW+

(van Leer limiter)

(250 · 125)

M-AUSMPW+

(van Leer limiter)

(250 · 125)

AUSMPW+

(van Leer limiter)

(350 · 175)

AUSMPW+

(van Leer limiter)

(500 · 250)

M-AUSMPW+

(van Leer limiter)

(500 · 250)

Height (h) 0.142 0.154 0.155 0.163 0.166
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Fig. 31. (a) Comparison of density distribution along the wall. (b) Comparison of density distribution along the wall.
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5. Conclusions

A new treatment of a cell-interface convective flux which typically appears in AUSM-type methods is

introduced to substantially reduce numerical dissipation in smooth region without compromising accuracy

in shock region. The core idea of the new method is to modify the convective quantity at a cell-interface by
considering flow physics. Through the analysis of TVD limiters, a simple criterion to predict a more accu-

rate cell-interface state is proposed and the convective quantity is re-evaluated according to the criterion.

The practical advantages of the proposed method can be revealed in two aspects. One is that the newly de-

fined cell-interface value is closer to the real physical value. The other is that it can eliminate numerical dis-

sipation effectively in non-flow aligned grid system. Thus, M-AUSMPW+, a new scheme formulated by

incorporating the re-evaluation procedure, improves solution accuracy significantly in multi-dimensional

problems.

Another desirable characteristic of M-AUSMPW+ is monotonicity in capturing a steady shock wave,
regardless of the location of sonic transition position. As a result, convergence characteristics and grid

dependency of AUSM-type methods are remarkably enhanced.

Through numerous test cases such as stationary and moving physical discontinuities, rarefaction wave,

vortex flow, shock wave/boundary-layer interaction, and viscous shock tube problem, M-AUSMPW+ is

proved to be equally efficient but about twice more accurate than previous schemes. If M-AUSMPW+

would be applied to three-dimensional problems, accuracy and efficiency is expected to be improved

further.
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